Information extraction in the field of
chemistry: a review

1. Introduction ([RIE)

The contemporary landscape of modern chemistry and materials science research is marked by
an exponential growth in the volume of scientific literature. This vast repository of knowledge,
which encompasses detailed information on novel compounds, properties, synthesis routes,
and experimental results, is predominantly stored in unstructured natural language text within
journal articles, patents, and reports. While this format is well-suited for human
communication, it poses a significant challenge for data-driven research approaches that rely on
structured, machine-readable data. Consequently, transforming this extensive pool of
unstructured text into structured, actionable knowledge is crucial for accelerating discovery and
innovation in the domains of chemistry and materials science.

Historically, the challenge of extracting information from chemical literature has been
addressed through the application of Natural Language Processing (NLP) techniques. Early
efforts in this field leveraged methods adapted from general NLP, such as rule-based systems
and statistical models, to identify entities (e.g., compounds, properties, and synthesis
procedures) and their interrelationships. These approaches, including Named Entity
Recognition (NER), Relation Extraction (RE), and Event Extraction (EE) pipelines, have
demonstrated satisfactory performance for specific, narrowly defined problems and datasets.
Various traditional NLP techniques, such as dictionary look-ups, rule-based methods, semi-
supervised approaches, and machine learning models utilizing architectures like BiLSTM-CRF
for NER and relation extraction, have been developed for chemical information extraction. Pre-
trained word embeddings, such as Word2vec and GloVe, and later contextual embeddings
derived from models like BERT, have played a pivotal role in capturing the semantic meaning of
chemical language. Although previous reviews have documented the progress of NLP and text
mining in this domain, the rapid evolution of NLP techniques, particularly the advent of Large
Language Models (LLMs), necessitates a comprehensive overview of the latest and most
advanced methods employed for information extraction in chemistry and materials science.
This review aims to provide a timely and structured analysis of these developments.

In recent years, the field of NLP has been profoundly transformed by the emergence of Large
Language Models (LLMs) such as GPT, Falcon, and BERT, which are built upon the Transformer
architecture. Trained on vast amounts of text data, LLMs exhibit remarkable general
"intelligence" capabilities, including advanced text understanding and generation. The success
of LLMs presents a significant opportunity and holds immense potential for information



extraction in the chemical and materials science domains. These models overcome some
limitations of traditional methods by enabling context-aware interpretation of unstructured
literature and flexible entity recognition. LLMs can redefine extraction tasks, often framing
them as text generation problems, and techniques like prompt engineering offer a novel way to
guide these models for precise and relevant information extraction. Moreover, domain-specific
LLMs fine-tuned on chemical or materials science corpora, such as SciBERT, MatSciBERT, or
SteelBERT, have demonstrated enhanced performance in domain-specific NLP tasks, including
information extraction. These advancements enable researchers to benefit from more accurate
information extraction and improved understanding of complex chemical concepts.

This review provides a comprehensive overview of recent advancements in applying NLP, with a
particular focus on Large Language Models, for information extraction in chemistry and
materials science. We will summarize the evolution of NLP methods in this field, encompassing
both traditional pipelines and modern LLM-based approaches. We will detail how these
techniques are applied to extract various types of chemical information, such as composition,
properties, and synthesis procedures. Furthermore, we will consolidate and discuss the latest
and most advanced methodologies and techniques currently employed for information
extraction, drawing insights from recent research. Finally, we will explore the future potential of
LLMs in this domain and outline key challenges and opportunities that will shape the landscape
of chemical information extraction in the coming years.
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2. NER+chemistry (FEiE)

a. Domain-level tasks

In the fields of chemistry and materials science, Named Entity Recognition (NER) is widely
applied to extract specific entities from unstructured text, supporting the creation of structured
datasets for further analysis. These domain-level tasks are highly specialized to identify key
components, processes, and properties relevant to each area. For instance, in the synthesis of
inorganic materials, NER is used to extract detailed procedures and conditions. In the study of
advanced materials like metallic glasses and Metal-Organic Frameworks (MOFs), NER targets
properties and structural information. Additionally, in the battery domain, NER is employed to
categorize components such as anode and cathode materials. The following table provides a
comprehensive overview of these tasks and the entities targeted for extraction.
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Domain-level Task Targeted Entities



General Materials
Information
Extraction

Synthesis Procedure
Extraction (General
Inorganic Materials)

Synthesis and
Processing Extraction
(Alloys, specifically
Superalloys)

Materials Properties
Extraction (Specific
Materials like Metallic
Glasses, Ternary
Chalcogenides)

Metal-Organic
Frameworks (MOFs)
and Reticular
Materials Information
Extraction

Chemical Reaction
Extraction

Battery Device
Component
Categorization

Organic Field-Effect
Transistors (OFETSs)
Experimental
Parameter Extraction

Polymer Synthesis
Routes

Catalysis Information
Extraction

NMR Data Extraction

b. Data annotation

Compounds, Alloy compositions, Properties, Synthesis actions, Parameters

Targets, Precursors, Operations, Conditions, Reactions

Synthesis and processing actions, Chemical compositions, Parameters

Material, Value, Unit (e.g., bulk modulus, critical cooling rates)

Synthesis details, Chemical formulae, Applications, Further descriptions

Reactants, Products, Reagents, Solvents, Catalysts, Conditions

Anode materials, Cathode materials, Electrolyte materials

Experimental parameters for OFETs

Polymer synthesis routes

Catalyst components, Catalyst characteristics

Specific entities not detailed in sources



In the realm of chemical and materials science, preparing data for Named Entity Recognition
(NER) tasks often begins with sourcing relevant literature. For instance, researchers like
Kononova et al.9 have utilized repositories such as EuroPMC55 and arXiv57, which offer a wealth
of open-access scientific articles. These platforms provide APIs for automated access, facilitating
the collection of large datasets.

Processing data for NER tasks in chemistry and materials science involves several steps to
ensure the data is in a suitable format for model training. For example, Schilling-Wilhelmi et
al.43 have demonstrated the importance of cleaning and segmenting text to focus on relevant
sections. They used regular expression-based pipelines to remove unnecessary parts of the text,
such as headers, footers, and references, which do not contain relevant information for NER
tasks. Additionally, they employed semantic chunking to divide the text into meaningful
segments, ensuring that each chunk contains relevant context. This approach helpsin
improving the efficiency and accuracy of the NER models by reducing noise and focusing on the
most informative parts of the text.

Data annotation serves as the foundational step in constructing structured datasets for chemical
information extraction. Given the inherent complexity of chemical texts—ranging from nuanced
nomenclature of chemical entities to diverse reaction conditions—annotation methodologies
must balance precision, scalability, and domain specificity. Current approaches predominantly
fall into two paradigms: manual annotation by domain experts and automated annotation
leveraging large language models (LLMs). This section delineates their workflows, comparative
advantages, and empirical validations.

1. Manual Annotation Paradigm

Manual annotation relies on domain expertise to ensure high-quality labeled data, particularly
critical in chemistry due to its specialized terminology and contextual dependencies. A
representative implementation is exemplified by the ChEMU laboratory (CLEF 2020) during the
construction of a chemical patent dataset [1].

Workflow:

1. Initial Annotation: Seed annotations are generated by mapping patent text to structured
entries from authoritative databases (e.g., Reaxys), termed "silver-standard" annotations.

2. Expert Review: Two independent chemists validate entity spans (e.g., chemical substances,
quantities) and augment missing entries. Discrepancies are flagged for arbitration.

3. Consistency Arbitration: Inter-annotator agreement (IAA) metrics (e.g., Cohen’ s k) quantify
discrepancies, with unresolved cases adjudicated by a third expert.

4. Format Standardization: Annotations are converted into structured formats (JSON/XML)
using tools like BRAT, capturing entities (e.g., *Chemical*, *Condition*) and relationships
(e.g., *ReactionStep®).



2. LLM-based Automated Annotation Paradigm

Recent advances in LLMs enable scalable annotation by synthesizing pre-trained knowledge
with domain-specific tuning. As demonstrated in Application of LLMs in Chemistry Reaction Data
Extraction [2], this paradigm enhances efficiency while maintaining robustness.

Workflow:

1. Prompt Engineering: Structured templates (e.g., JSON schemas) guide LLMs to extract
entities (e.g., SMILES, molarity) and contextual attributes.

2. Domain Fine-tuning: Models like GPT-3.5 or LLAMA-2 are adapted using limited labeled data
(100-500 samples) to improve chemical context recognition.

3. Validation and Correction: Outputs are filtered via computational checks (e.g., RDKit-based
SMILES validation) and heuristic rules (e.g., discarding molarity outliers beyond +20%
expected ranges).

c. Model

Large Language Models (LLMs), or foundation models, show significant promise in tackling
complex Natural Language Processing (NLP) tasks like Named Entity Recognition (NER) and
relation extraction. The idea of "self-supervised learning" through transformer-based models
like BERT, pre-trained on massive corpora of unlabeled text to learn contextual embeddings, is
the dominant paradigm of information extraction today. These models can be fine-tuned on

specific datasets for tasks like NER.

e Fine-tuning



o Method: The process typically involves pre-training a language model on a large
amount of unlabeled text using unsupervised objectives. The resulting encoder, such as
a BERT-based encoder, generates token embeddings that are context-aware. These
embeddings are then fed into a task-specific machine learning model, often a neural
network (like a linear layer with softmax), which learns to predict the required labels,
such as entity types. Fine-tuning involves supervised learning on specific, often
labeled, datasets. For NER, this means feeding labeled inputs to the BERT model and
using the output vector embedding for each word, along with its corresponding entity
label, as input to a task-specific model. Examples of BERT-based models used or fine-
tuned for materials science NLP tasks include BERT, SciBERT, BatteryBERT, MaterialsBERT,
MatSciBERT, ChemBERTa, and BERT-PSIE. LLMs like GPT-3.5-Turbo, GPT-4, and GPT-4-
Turbo have also been fine-tuned for NER and relation extraction tasks in materials
science. Fine-tuning can involve adapting the model's behavior to a specific output
format, such as a conversational style, before using another tool to transform the
response into a structured format like JSON. For relation extraction fine-tuning, strategies
caninclude varying the sorting of entity lists in the prompt or augmenting the dataset
size with shuffled entity lists.

e Prompt Engineering

o Details: Prompt engineering involves designing inputs to LLMs to guide their output. One
approach is to use prompt engineering with LLMs like ChatGPT to structure text,
generate summaries, and compile information. Another source mentions using LLMs with
prompt-engineering and fine-tuning techniques.

o Chain of Thought (ACT): The sources do not explicitly mention "Chain of Thought (ACT)"
as a prompting technique. However, one source describes an "agent-based learning
framework" where an Al agent is equipped with tools, including a "chain-of-verification
(CoV)" tool. This tool is used to autonomously re-evaluate the reasoning behind the
agent's decision (e.g., predicting water stability) to ensure its logical connection to the
property and reduce hallucinations. While not exactly the same as Chain of Thought
prompting, it involves a reasoning/verification step.

e Agent (LLM + Tools)



o Toolkit: An effective approach to address the limitations of standalone LLMs in intricate
tasks is to augment them with domain-specific toolkits. This combination forms an Al
agent. In one framework, the Al agent (named Eunomia in the case study) was equipped
with various tools. A key tool is the Doc Search tool, which extracts relevant knowledge
materials properties from text ranging from a single sentence to a full research paper. This
tool works by embedding the paper and queries into numerical vectors and identifying
the top 'k' passages within the document that mention or imply the property of interest.
Another tool mentioned in conjunction with the agent is the chain-of-verification (CoV)
tool.

o Other relevant aspects: The integration of tools with LLMs aims to provide precise
answers, addressing the inherent limitations of LLMs in specific domains and enhancing
their overall performance and applicability. The agent framework was tasked with
extracting information, such as identifying MOFs and predicting their properties. This
approach was evaluated on tasks with increasing complexity, including NER, Relation
Extraction, Template Filling, Argument Mining, and Entity Linking.

We provided a table(table 3) summarizing some model comparisons based on the provided
sources in appendix.

d. Post-Processing

Post-processing steps are crucial after initial entity extraction to refine results, structure data,
and handle complexities like co-references.

e Validation: The performance of NER models is typically evaluated using metrics such as
precision, recall, and F1 score. These metrics compare the predicted entity tags to the
ground truth labels. For materials science, evaluating extraction of intricate material
expressions requires specific methods. A novel evaluation method involves normalizing
materials to their chemical formulas before conducting a pairwise comparison of each
element, referred to as "formula matching". This provides a more meaningful assessment for
material names. Evaluation can also involve soft matching techniques to overlook minor
discrepancies or strict matching. For datasets created through manual annotation by
multiple experts, inter-annotator agreement metrics are used to assess annotation quality.
Fact-based verifier metrics can also be used.



e Output Form: The goal is to transform unstructured text into a structured format. Extracted
information can be compiled into a highly structured format to form a materials
database. For the automated text mining pipeline for superalloys, the output was a 6-tuple
relation: article DOI, alloy named entity, chemical element, content, property specifier, and
property value. Generative models like LLMs can be trained to generate output in a valid
JSON (JavaScript Object Notation) format as part of efforts to extract structured
databases. Tasks can also be unified into sequence-to-sequence formats to facilitate the
use of LLMs. Another output format mentioned is ORD-formatted structured data. For NER
data specifically, the CoONLL 2002 NER format is used, which is a tab-separated text format
using Beginning-Inside-Outside (BIO) chunk tagging to indicate the position of tokens
within an entity.

e Co-reference: Co-reference resolution focuses on finding all expressions that refer to the
same entity in the text. Examples include phrases like "these materials" or "each material"
referring back to a previously mentioned specific material. Co-referencing material entity
mentions across large spans of text and across figures and tables is a challenging problem.
This task is critical for automated database development, especially when authors use
abbreviations or simplified references after initially defining a compound. While LLMs have
shown promise in other areas, one source notes that they have not been explored for
intricate challenges like co-reference resolution. However, a fine-tuned LLM demonstrated
the ability to recognize cross-referencing tokens.

e Other relevant aspects: A significant post-processing step is named entity normalization.
This involves identifying all the variations in the name for an entity across a large
number of documents and mapping them to a canonical form. For example, different
names or acronyms for the same synthesis technique, like "chemical vapor deposition" and
"CVD", should be recognized as synonyms. This normalization is achieved using methods like
training a classifier to determine if two entities are synonyms, often using word embeddings
and other features. Entity normalization greatly increases the number of relevant items
identified in document querying.

e. Challenge



e Ontology Expanding: Ontologies are formal presentations of a domain, providing term
meanings and hierarchical structures, and are useful for formalizing the semantics of
entities. The ontology used in some work consists of important entity types but misses other
information about the material property record, such as processing conditions,
measurement methods, or conditions, which often influence property values. Extending the
ontology to include this metadata would require explicitly labeling those new entities and
training a new NER model, which is described as time-intensive. While supervised NER can
extract entities like material names and properties using the current ontology, obtaining
additional domain-specific information might require unsupervised methods like heuristic
rules and regular expressions.

* Fine-Grained: NER tasks can operate at different levels of granularity. The MaterioMiner
dataset, for instance, distinguishes between coarse-granular NER (CG-NER), which
recognizes high-level concepts from an ontology, and fine-granular NER (FG-NER), which
addresses the recognition of low-level concepts. This dataset is noted for its eminently fine-
granular annotation, manually annotating 179 distinct classes. Recognizing and extracting
this detailed, domain-specific information at a fine-grained level remains challenging.

e Other relevant challenges:

o Ambiguity and Complexity: Scientific literature can contain semantic ambiguity, such
as sentences with multiple mentions of compounds and properties, making correct
association difficult for NLP. Complex operation sequences described in synthesis
procedures, where steps might be omitted or branching occurs, are also challenging.

o Multi-modal Information: Relevant material property information is not confined to the
text body but is also found in tables and figures. Extracting data from these non-textual
sources is challenging.

o Limited Data: Many tasks, especially supervised ones, require a large number of labeled
samples or datasets, which are often lacking or limited in materials science sub-
domains. Extending methods to new domains requires labeling new datasets with
tailored ontologies.

o Domain Specificity: Generic NLP tools do not perform well in the materials science
domain without modification due to the specialized vernacular, sentence structure,
terminology, and chemical semantics. Materials names can have non-trivial variations.
Generalizing tools across disparate sub-domains within materials science is challenging.

o Specific Entity Types: Obtaining SMILES strings for organic materials is a bottleneck
for generating structural fingerprints needed for property prediction models. Unlike
polymers, organic molecules can often be converted to SMILES strings, but extracting
them accurately is difficult.



o Contextual Understanding: NER relies on identifying the objects of semantic value.
Materials-specific challenges vary by subdomain and include subtleties associated with
the property, context, and reporting of measurements. Non-local dependencies (linked
information across a document or modalities) are critical but difficult to capture with
methods primarily relying on local dependencies.

o Entity Linking: Beyond recognition, distinguishing between similarly named entities
(Entity Linking) is a challenge.

3. RE+Chemistry (PFF5)

a. Domain-level tasks

In the fields of chemistry and materials science, Relationship Extraction (RE), as a core
technology for accurately identifying and extracting predefined semantic relationships between
chemical entities from vast amounts of unstructured text, plays a crucial role in constructing
structured chemical knowledge bases and accelerating the paradigm shift towards data-driven
scientific research. Through RE, researchers can uncover knowledge associations deeply
embedded in literature, such as compound synthesis pathways, material structure-property
relationships, and drug-target interaction mechanisms, thereby significantly advancing
scientific discovery and technological innovation. RE tasks in the chemical domain are diverse,
with their primary goal being to serve specific research and application needs.

The table below outlines the major RE task types in the chemical domain and their typical
application scenarios:

Task Type Description & Typical Examples

Chemical Reaction RE  Identifies complex interactions between reactants, products, catalysts,
solvents, and reaction conditions (temperature, pressure, time, etc.). For
example, extracting components and their roles, along with the "heating"
condition, from "Ethyl acetate is hydrolyzed to sodium acetate and ethanol by
heating in aqueous sodium hydroxide solution."

Material-Property RE  Extracts associations between specific materials and their physical properties
(e.g., melting point, conductivity), chemical properties (e.g., stability,
reactivity), or structural features (e.g., crystal phase, pore size). For example,
identifying "MXene materials (TiXICX T[X]) exhibit great potential in energy
storage due to their excellent conductivity and hydrophilicity."

Drug-Target-Disease In medicinal chemistry and chemical biology, identifies interactions (e.g.,

RE inhibits, activates, binds to) between drug molecules, biological targets
(proteins, enzymes, etc.), and related diseases. For example, extracting the
drug, target, mode of action, and indication from "Osimertinib is a selective,



irreversible EGFR tyrosine kinase inhibitor used to treat EGFR T790M mutation-
positive non-small cell lung cancer."

Synthesis/Process RE  Identifies sequential or dependency relationships between precursors,
intermediates, operational steps, equipment used, and final products in
synthetic experiments or material preparation processes. For example,
confirming "ZnO nanorods were synthesized by a hydrothermal method using
zinc nitrate and hexamethylenetetramine as precursors, reacting at 90°C for 12
hours."

The effective execution of these RE tasks provides robust data support and analytical tools for
automating the construction of chemical reaction networks, guiding new material design and
screening, accelerating drug discovery processes, and empowering the development of
chemical knowledge graphs.

b. Data annotation

High-quality annotated data is the cornerstone for training reliable supervised RE models and
objectively evaluating their performance. In the chemical domain, the data annotation process
is particularly complex and challenging. Firstly, it is necessary to precisely define the
relationship schema to be extracted based on specific research or application needs. This
includes the types of relationships and the entity categories involved. For instance, in studying
extractant performance, one might need to define relationships like

" EXTRACTS (Extractant, MetalIon) "and" HAS_EFFICIENCY(ExtractionEvent,
Value, Unit) "todescribe extraction efficiency. The rationality and completeness of the
relationship schema directly impact the quality of subsequent annotation work and the utility of
the model.

To ensure consistency and accuracy in annotation, detailed Annotation Guidelines are
indispensable. These guidelines must provide clear definitions for each relationship type,
typical positive examples, and easily confused negative examples, and clearly state the
principles for handling ambiguous or complex situations, such as how to differentiate between
catalysts and reaction promoters, or how to deal with implicitly stated causal relationships in
literature. The specialized nature of chemical text requires annotators to possess relevant
chemical background knowledge and to improve annotation quality through systematic training
and continuous feedback calibration. Metrics such as Cohen's Kappa or Fleiss' Kappa are
commonly used to quantify Inter-Annotator Agreement (IAA), serving as an important basis for
assessing data reliability. Professional text annotation tools like BRAT, Doccano, or INCEpTION
significantly enhance annotation efficiency and ensure uniformity in annotation format by
providing graphical annotation interfaces and standardized data export functions. However, the
complex and diverse expressions of relationships in chemical literature, such as long-range
dependencies, coordinate structures, implicit information, and negative expressions, make



annotation work time-consuming, labor-intensive, and costly. Concurrently, the rapid
development of knowledge in the chemical domain, with the continuous emergence of new
compounds, reactions, and materials, poses ongoing challenges to the dynamic adaptation and
updating capabilities of annotation schemas.

c. Model

The development of models for relationship extraction in chemistry has progressed from
traditional machine learning methods to deep learning approaches, and further into a new
phase empowered by large-scale Pre-trained Language Models (PLMs) and Large Language
Models (LLMs). Initially, rule-based methods relied on domain experts to manually construct
patterns and rules; while achieving high precision in specific scenarios, their generalization
ability and recall were limited. Subsequently, feature-based statistical learning methods, such
as Support Vector Machines (SVM) and Maximum Entropy models (MaxEnt), performed relation
classification by designing features related to vocabulary, syntax (e.g., dependency paths), and
entities, but the feature engineering process itself was time-consuming and highly dependent
on expert experience.

The advent of deep learning methods, with their powerful ability to automatically learn features,
has made them mainstream in the RE field. Convolutional Neural Networks (CNNs) excel at
capturing local contextual features in text; Recurrent Neural Networks (RNNs) and their variants
(such as LSTM, GRU) are better suited for processing sequential information and long-range
dependencies. The introduction of the Attention Mechanism has significantly enhanced the
performance of architectures like RNNs and Transformers by allowing models to focus on key
parts of a sentence relevant to a specific relationship. Furthermore, when text can be converted
into graph structures (e.g., dependency parse trees) or when external knowledge needs to be
integrated, Graph Neural Networks (GNNs) have demonstrated advantages in learning entity and
relationship representations.

In recent years, Pre-trained Language Models (PLMs), particularly BERT-derived models pre-
trained on scientific literature or specifically for the chemical domain (e.g., SCiBERT,
ChemBERT), have vastly improved extraction performance. They achieve this by learning rich
language representations from massive text corpora and then fine-tuning on downstream RE
tasks, showing particular strength in low-sample scenarios and domain adaptability. Acommon
paradigm involves feeding the representations of entity pairs in a candidate relation into a
classification layer. More recently, prompt-based learning approaches, which reformulate RE
tasks into formats similar to pre-training tasks (e.g., cloze tests) using templates, have effectively
unlocked the potential of PLMs in few-shot or even zero-shot scenarios.

Currently, Large Language Models (LLMs), such as the GPT series, are bringing new
breakthroughs to the RE field with their exceptional contextual understanding, reasoning, and



generation capabilities. Through carefully designed instructions or by leveraging their in-context
learning abilities, LLMs can perform relationship extraction directly in zero-shot or few-shot
settings, and can even handle more complex, open-ended relationship types. This, to some
extent, alleviates the dependency on large-scale annotated data. However, ensuring the
precision and controllability of LLMs in specific chemical sub-domains, as well as effectively
mitigating their "hallucination" problem, remain key research focuses and challenges.

d. Post-Processing

After the model outputs initial extraction results, implementing effective post-processing steps
is crucial for enhancing the quality, consistency, and usability of the final output. This stage
typically involves rule-based filtering and validation based on chemical domain knowledge,
such as using atom conservation, valency rules, or constraints of known reaction types to
eliminate obviously erroneous or illogical relationship triples. For example, if an extracted
reaction shows an element present in the reactants but completely absent in the products, this
extraction result is likely incorrect.

Many models also provide a confidence score for extracted relationships. By setting an
appropriate threshold, a trade-off can be made between precision and recall, removing low-
confidence results that are more likely to be erroneous. For relationship instances extracted
from different text segments but describing the same fact, relationship deduplication and fusion
operations are necessary to ensure knowledge non-redundancy and completeness. For
instance, information about the same reaction step extracted from both the abstract and the
main body of a paper should be merged.

Furthermore, aligning and enriching the model's extracted relationships with existing
authoritative chemical knowledge bases (e.g., ChEMBL, PubChem, Reaxys) can not only validate
the accuracy of the extractions but also supplement and enrich the new results with structured
information already present in these KBs, such as completing standardized compound names or
CAS numbers. For critical application scenarios or extraction results where the model exhibits
high uncertainty, introducing a human review and iterative refinement mechanism is essential.
Domain experts review and correct these results, and the corrected high-quality data is fed back
to the model for incremental learning or fine-tuning, thus forming a continuous improvement
loop that progressively enhances the model's performance and reliability.

e. Challenge

Despite significant advancements in RE technology for chemical information extraction, its
practical application still faces multifaceted challenges, which collectively constitute key
directions for future research.



Challenge Category

Complexity and
Ambiguity of
Chemical Text

Data Sparsity and
Annotation Cost

Long-range and
Complex
Dependencies

Fine-grained Relation

Distinction & Novel
Relation Discovery

Multimodal
Information Fusion

Model

Interpretability,
Robustness, and
Trustworthiness

Specific Description

Chemical literature is replete with diverse compound nomenclatures
(systematic names, common names, trade names, CAS numbers), numerous
abbreviations, and complex descriptions of chemical reactions and material
preparation processes. Long sentences, intricate syntactic structures, and
implicitly stated, non-direct relationships between entities (e.g., causal
relationships inferred through multiple steps) are prevalent. Furthermore,
accurately identifying and processing negative expressions (e.g., "no catalytic
activity was observed") and uncertainty descriptions (e.g., "it is speculated
that a complex may be formed") poses significant demands on the precision of
RE.

High-quality, large-scale annotated datasets for specific chemical sub-
domains or fine-grained relationships remain scarce. The specialized nature of
chemical text requires annotators to possess deep domain knowledge, making
the annotation process not only time-consuming and labor-intensive but also
difficult to rapidly scale to new research areas or relationship types due to high
labor costs.

Relevant entities or pieces of information required to form a complete
relationship may be distributed across different parts of a sentence or even
span multiple sentences or paragraphs. Effectively capturing and
understanding these long-range, non-local contextual dependencies poses a
severe test for a model's sequential understanding and information
integration capabilities.

Accurately distinguishing between semantically similar but substantially
different fine-grained relationship types (e.g., differentiating the subtle

nuances between "catalyzes," "promotes," and "enhances") is a major
difficulty. Concurrently, most existing RE methods rely on predefined
relationship schemas, making it challenging to automatically discover novel,
undefined relationships in literature or to identify entirely new categories of

chemical entities, thereby limiting the boundaries of knowledge discovery.

Chemical literature typically contains information in multiple modalities,
including text, tables, chemical structure diagrams, reaction flowcharts, and
spectra (e.g., NMR, IR, MS). Effectively fusing this multimodal information from
diverse sources and structures to enhance the accuracy, coverage, and
robustness of RE is a highly challenging frontier research direction.

Deep learning models, especially large language models, often have decision-
making processes that lack transparency and are considered "black boxes,"
making it difficult to explain why a particular relationship was extracted or
why an error occurred. Simultaneously, the robustness of models to minor
perturbations in input text (such as spelling errors, synonym replacements,
sentence paraphrasing), as well as the veracity (avoiding "hallucinations") and



trustworthiness of their generated content, are critical issues awaiting
resolution for practical applications.

Overcoming these challenges will further propel chemical information extraction technology
towards being more intelligent, precise, practical, and trustworthy, thereby better serving
chemical research and industrial applications.

4. Joint NER+RE+Chemistry (1%1E9X)

a. Domain-level tasks

In the field of chemistry, the joint application of Named Entity Recognition (NER) and Relation
Extraction (RE) has become a core method for information extraction, enabling effective
extraction of chemical knowledge from a vast amount of literature. These techniques can not
only identify key entities such as chemical substances, reaction conditions, and experimental
results, but also extract the complex relationships between these entities. This allows
unstructured text to be transformed into structured information, significantly advancing
research and discoveries in fields like materials science, pharmaceutical chemistry, and
catalysis. For example, in chemical reactions, NER can identify key entities such as reactants,
products, and catalysts, while RE can extract the relationships between these entities, such as
the transformation between reactants and products and the catalytic role of catalysts. In
pharmaceutical chemistry, NER can extract the names, structural information, and
pharmacological properties of drug molecules, while RE can reveal the relationship between
molecular structures and their biological activities. In materials science, NER can identify
different types of materials, synthesis conditions, and physical-chemical properties, while RE
can extract the relationships between materials and their performance, helping researchers
better understand material behaviors. In battery research, NER can identify key components
such as anode materials, cathode materials, and electrolytes, while RE can extract the
relationships between these components and battery performance, such as capacity and cycle
stability. In catalytic reactions, NER can identify catalysts, reactants, and products, while RE can
reveal catalytic roles and the relationships between catalysts and reactants.

This combined NER and RE approach not only efficiently extracts key information from literature
but also establishes hierarchical relationships between entities, making chemical knowledge
more systematic and suitable for subsequent data analysis and model building. With the advent
of large language models (LLMs) like GPT and LLaMA, the performance of these joint tasks has
become increasingly impressive, handling more complex multi-level relationships and enabling
more precise information extraction. Unlike traditional NER and RE methods, this approach
does not require the enumeration of all possible n-tuples of relations. Instead, it fine-tunes large
language models to flexibly handle complex hierarchical relations and extract them accurately,



providing stronger adaptability. Furthermore, this approach allows users to define the output

structure, generating structured representations of knowledge that are easy to process.

Domain-level Task

Targeted Entities

Relationships

Chemical Reactants, Products, Transformation between reactants and products,
Reaction Catalysts, Solvents catalytic effect of catalysts on reactants
Extraction

Pharmaceutical

Molecules, Molecular

Relationship between molecules and their

Chemistry & Structures, properties, e.g., "anticancer activity," "optimal
Molecular Pharmacological concentration"

Property Properties, Experimental

Extraction Conditions

Materials Science:
Properties &

Materials, Synthesis
Conditions, Physical

Relationship between synthesis conditions and
physical properties, e.g., "temperature and

Processing Properties, hardness"
Conditions Characterization Methods
Extraction

Battery Research:

Anode Materials, Cathode

Relationship between electrode materials and

Electrode Materials, Electrolytes, battery performance, e.g., "capacity and current
Materials & Battery Performance density relationship"

Performance

Extraction

Catalytic Catalysts, Reactants, Relationship between catalysts and reactants, e.g.,
Reactions: Products, Experimental "catalyst and product relation"

Catalyst & Conditions

Reactivity

Extraction

Virology & Disease Name, Location, Structured representation of R, studies through

Epidemiology: R,
Estimation
Extraction

Date, R, Value, Confidence
Interval (%Cl), Estimation
Method

property-value pairs; relation between disease and
R, estimate across different contexts

b. Data annotation

In the field of joint Named Entity Recognition (NER), Relation Extraction (RE), and Chemistry,
data annotation is a critical yet complex process that directly determines the quality of model
training and evaluation. To ensure practical and high-quality annotations, researchers often
begin by selecting a curated subset of documents from large scientific corpora. These
documents are then manually annotated to create gold-standard datasets, typically structured



in both plain-text and JSON formats to accommodate downstream applications. The annotation
process involves identifying chemical entities such as materials, reagents, and experimental
conditions, and establishing relationships among them (e.g., catalyst-reactant, temperature-
reaction rate). Despite the labor-intensive nature of the task, much of the information can be
directly extracted from the text, making the work tedious but not highly ambiguous. However,
variability in the linguistic expression of chemical information presents a unique challenge; for
instance, “Pd-intercalated silica” and “silica intercalated with Pd ions” convey the same
concept in different forms. To account for such variations, manual evaluation scores are often
introduced to complement strict automated metrics like precision and recall, ensuring that
semantic correctness is preserved even when string matches differ. Furthermore, human-in-the-
loop workflows are widely adopted to accelerate annotation by using model predictions as
initial labels that are later refined by human annotators. This iterative strategy reduces effort
and enables efficient expansion of training sets. Lastly, transparency and reproducibility are
emphasized by open-sourcing annotated datasets, preprocessing scripts, and model weights.
Together, these practices contribute to building robust, semantically accurate, and practically
usable datasets for chemical information extraction in scientific texts.

c. Model

In the domain of structured information extraction for chemistry and materials science, some
studies focus on jointly modeling Named Entity Recognition (NER) and Relation Extraction (RE),
leveraging Large Language Models (LLMs) for efficient implementation. One approach involves
instruction tuning, using encoder-decoder LLMs such as FLAN-T5, with a representative example
being ORKG-FLAN-T5RO0. This method formulates the task of extracting structured triples from
scholarly text as a sequence-to-sequence problem, where the input includes carefully crafted
natural language instructions and the output consists of the extracted structured information. It
explores the impact of different types of instructions on model performance, including single-
instruction training, multi-instruction joint training, and selecting the best-performing
instruction based on validation results. Although the model does not rely on extremely large
parameter sizes (e.g., 11B), it achieves robust performance on complex extraction tasks with
only 780M parameters. To support various downstream tasks, ORKG-FLAN-T5R0 offers both
plain-text and JSON outputs, and evaluates its performance using exact-match and partial-
match Precision/Recall/F1 metrics under fine-tuning settings, as well as ROUGE and other
summarization-style metrics under zero-shot settings.

In addition, a schema-driven fine-tuning strategy can be employed to build task frameworks
more closely aligned with the semantic structures of materials science. Representative works
utilize decoder-only models like GPT-3 or Llama-2 and perform information extraction through
prompt-based completion. This approach places particular emphasis on the design of schemas,
framing the task as generating structured entities and their attributes or relationships from a
single prompt. For instance, in the task of material doping, the schema explicitly distinguishes



elements such as Host, Dopant, Result, and Modifier, and supports many-to-many mappings
between entities. In domain-specific applications like Metal-Organic Frameworks (MOF), the
model identifies semantic links between material names and their application contexts.
Furthermore, researchers have developed general-purpose schemas for broader materials
corpora, covering elements like formulas, applications, and crystal structures. During data
construction, a human-in-the-loop approach is often adopted, where experts manually annotate
a subset of the data, and fine-tuned models generate candidate outputs for human correction—
enhancing data quality and coverage. The final outputs are typically in JSON or natural-
language-like structured formats, facilitating subsequent use in knowledge graph construction
or database integration.

d. Post-Processing

In the domain of joint Named Entity Recognition (NER), Relation Extraction (RE), and Chemistry,
post-processing plays a vital role in transforming raw model outputs into clean, structured, and
semantically accurate representations. This stage typically involves several tasks such as entity
normalization, error correction, format validation, and hallucination mitigation. For instance,
chemical entities extracted directly from the text often contain extraneous whitespace or
inconsistent naming; a post-processing step might correct "Li Co 02" to the standardized
"LiCo0," or align "PdO functionalized with platinum" to a structured JSON format like

{formula: "PdO", description: ["Pt-functionalized"]} .Furthermore, post-
processing ensures that the output adheres to a predefined schema (e.g., JSON), which is crucial
for downstream applications such as knowledge graph construction or automated literature
analysis. In some cases, model hallucinations—where the LLM fabricates information not
present in the source—must be filtered out, especially when the generated content is chemically
plausible but unverifiable in context. Notably, recent methods like LLM-NERRE have begun to
embed these normalization and correction procedures directly into the training data, enabling
the model to learn how entities should appear and be structured, thereby reducing the need for
extensive post-processing. This approach not only improves consistency but also significantly
accelerates the annotation and model deployment pipeline. Nonetheless, post-processing
remains an essential safeguard, particularly in scientific domains where precision and format
compliance are critical.

e. Challenge

In the field of chemistry, joint Named Entity Recognition (NER) and Relation Extraction (RE) tasks
face numerous challenges and limitations, primarily due to the complexity, multimodality, and
unique expression styles of chemical data. First, chemical literature involves diverse types of
entities with inconsistent naming conventions, including a mix of technical terms,
abbreviations, systematic nomenclature, and common names, which poses significant
difficulties for NER. Moreover, relationships between chemical entities often rely on complex
experimental setups, data tables, image annotations, or cross-references within the context,



making it difficult for a single model to capture all relevant information accurately. Most existing
joint NER+RE methods are primarily text-based, yet in chemical documents, key information is
frequently embedded in figures, formulas, and structural diagrams (e.g., molecular structures,
CIF files), which current models struggle to handle robustly and generalize across. Although
vision-language models (VLMs) offer a pathway to extract data from both text and visual sources,
their adaptability to the chemical domain remains limited—especially when it comes to
mapping structural data to semantic information. Compounding the issue, chemical literature
often relies on cross-document or external knowledge base references, where the meaning of an
experiment or entity may depend on definitions or results in other papers. Current joint
extraction models are typically constrained to single-document contexts and cannot effectively
reconstruct knowledge graphs across documents. Additionally, scientific publishing is biased
toward positive results, with negative or failed experiments rarely reported. This leads to
training data that lacks full coverage of real-world scientific processes, hindering the
development of comprehensive extraction systems. The absence of high-quality, multimodal,
and cross-document benchmarks for joint NER+RE further complicates progress—the tasks are
often overly simplified and fail to reflect the actual extraction needs in real-world chemistry.
Finally, while structured scientific publishing (e.g., semantic publishing) offers promise, it is still
in its early stages. A lack of standardized formats, tools, and broad community adoption limits
the development of large-scale, high-quality chemical knowledge graphs. Thus, joint NER+RE in
the chemistry domain not only encounters modeling and data-level challenges but also requires
coordinated advancements in methodology, tooling, and community consensus.

5. EE+Chemistry (&%)

a. Domain-level tasks

In this review, EE stands for Event Extraction. It refers to the task of identifying and extracting
information related to specific events from unstructured text. The goal of EE is to detect the
event itself and then capture the relevant attributes associated with the event.

Domain-level Task Targeted Entities

General Materials Synthesis processes and parameters, Process routes
Information

Extraction

Synthesis Procedure Chemical synthesis procedures, Targets, Precursors, Operations, Conditions,

Extraction (General Reactions, Components, Reaction conditions, Flowcharts of possible synthesis
Inorganic Materials) procedures
Synthesis and Synthesis and processing actions, Parameters

Processing Extraction



( Continuous Events,
Linked in Sequence)

Experimental Action sequences
Procedures Extraction

High-fidelity Reaction-related information
Chemical Data
Extraction

b. Data annotation

Data annotation for these extraction tasks often involves manual labeling, although challenges
exist, particularly for complex descriptions like alloy processing routines or when handling
token/chunk-level actions.

Semi-supervised methods have been proposed and used to expand labeled data or
automatically generate corpora to improve extraction precision. For example, a semi-supervised
Snorkel framework was used for the materials domain via automatically generated corpus.

The limited size of hand-labeled datasets, especially for niche areas like alloys, presents
challenges for training supervised deep learning methods for tasks like named entity
recognition or relation extraction related to processes.

For LLM-based approaches, prompt engineering can be used to direct the models for extraction,
which can differ from conventional NLP pipelines that rely on explicitly annotated data for
training. Some LLM approaches leverage "human-in-the-loop" annotation processes.

c. Model

Traditional NLP pipelines for automatic data extraction have been developed, often relying on
rule-based approaches, machine learning (ML) methods, or a hybrid combination.

Specific ML models like neural networks and parse-based methods have been used to extract
synthesis parameters. BiLSTM-CRF models were used for named entity recognition related to
materials science entities (which would be part of event extraction).

Semi-supervised machine-learning methods like latent Dirichlet allocation and Markov chains
have been applied to classify synthesis procedures and reconstruct flowcharts.

Transformer-based language models, including BERT-based models (like BatteryBERT) and fine-
tuned versions, have been used, offering improved context-aware interpretation.

Large Language Models (LLMs), such as GPTs and Llama models, are increasingly used, often via
prompt engineering or fine-tuning with domain-specific data.

Multimodal models (VLMs) are emerging to extract information from non-textual data modalities
critical for synthesis procedures, such as reaction schemes and figures.



Al agents are being explored to autonomously perform complex research tasks, including
information extraction and experimental execution, by integrating LLMs with retrieval tools and
potentially controlling laboratory equipment. An autonomous Al agent framework has been
developed specifically for chemical literature data mining to extract reaction-related
information.

d. Post-Processing
Post-processing often involves interdependency resolution among extracted entities.

Data normalization is crucial, especially for chemical names (using tools like PubChem) and
units (using tools like pint or unyt) to ensure consistency before analysis or comparison.

Validation using chemical knowledge and understanding is a significant advantage in this
domain. This involves applying "sanity checks" based on domain rules and links between data
entries. Examples include using cheminformatics tools to validate consistency of extracted
molecular properties or checking the conservation of atoms in extracted reaction equations.
This validation can also serve as an early evaluation loop.

Using another LLM to check for factual inconsistencies or hallucinations in the extracted data is
also possible.

The extracted structured data can be used to populate databases or create structured
summaries and knowledge graphs.

e. Challenge
In the process of EE in the field of chemistry, there are lots of challenges:

Handling the description of synthesis and processing routes as continuous events with actions
linked in sequence, which exhibit diverse types, flexible expressions, and varied
conditions/parameters. The diversity of topics and reporting formats in chemical and materials
research presents a challenge for traditional methods hand-tuned for specific cases. While LLMs
handle variability better, they can struggle with domain-specific polysemy (ambiguous terms
like "yield"). Handling diverse data modalities beyond text, such as reaction schemes, tables,
figures, crystal structures, and spectra, which contain critical information related to procedures
and outcomes is also a difficult thing.

Distinguishing between token-level and chunk-level action entities and the variability in how
actions are described based on their position in the process. The descriptions of events are
frequently intertwined with discussions on experimental phenomena and intermediate
products, making extraction difficult.

Ensuring models provide accurate and reliable predictions or extractions, as they often lack the
specificity and domain expertise required for intricate tasks. Establishing ethical and validation



frameworks for Al-generated content and hypotheses derived from extracted data, including
auditing Al-proposed reactions.

The lack of standardized benchmarks for structured data extraction makes systematic
evaluation challenging.

6. Application (¥7iE5%)

In the field of chemistry, the application of Named Entity Recognition (NER), Relation Extraction
(RE), Event Extraction (EE), and Joint NER+RE technologies is significantly driving the
automation and informatization of chemical research. The primary task of NER is to identify and
extract chemical entities from literature, such as compound names, chemical formulas,
experimental conditions, and more. For example, NER can automatically recognize chemical
substances like "sodium chloride (NaCl)" or "benzene (C,H,)," as well as experimental conditions
like temperature and time involved in reactions. This not only helps researchers quickly organize
key information from the literature but also supports database construction and literature
retrieval. RE focuses on identifying various relationships between chemical entities, particularly
in chemical reactions. Through RE, researchers can extract relationships such as "sodium
chloride reacting with water to form hydrogen chloride," thereby helping to establish reaction
networks and reveal the rules of chemical reactions. In addition, RE can be used in
pharmaceutical chemistry to identify the relationships between molecules and biological
targets, aiding in drug discovery and molecular design. EE, on the other hand, specializes in
identifying key events in chemical experiments or processes, such as changes in reaction
conditions or experimental steps. EE can automatically extract information about reaction
temperature, pressure, reaction time, and other factors from the literature, helping to accelerate
experimental design and optimization. Additionally, EE can assist in extracting biological events
in drug research, such as "compound X inhibits enzyme Y activity," providing crucial
pharmacological information. The Joint NER+RE technology combines these two tasks, allowing
for more comprehensive and efficient extraction of information from chemical literature by
simultaneously recognizing chemical entities and extracting relationships. This method allows
researchers to quickly identify chemical entities and extract their complex relationships,
providing essential support for reaction pathway prediction, new material design, and the
construction of chemical knowledge graphs. Overall, the application of these technologies
greatly improves the efficiency and accuracy of information extraction, providing strong
technical support for research, innovation, and discovery in the field of chemistry. With the rapid
development of big data and artificial intelligence, NER, RE, EE, and Joint NER+RE will further
drive the automation of chemical research, having a profound impact on the discovery of new
compounds, drug design, and materials science research.

7. Future (E3)



a. Possible improvements to information extraction

Future advancements will enable LLMs to achieve greater success by enhancing fundamental
capabilities like numerical reasoning, quantitative predictions, and structural interpretations.
Systematically enhancing numerical capabilities requires focusing on dataset construction,
model architecture, task planning, training optimization, and tool integration. Establishing
quantitative relationships between composition, processing, and properties from text is a
challenge that future strategies, such as integrating materials language encoders with property
prediction networks or using Al agents with computational tools, aim to address. Scientific
reasoning needs improvement to mitigate the generation of inaccurate or hallucinated
information, which can be addressed through strategies like Retrieval-Augmented Generation
(RAG) and leveraging reinforcement learning (RL).

LLMs and Vision Language Models (VLMs) are expected to become more robust in handling
diverse data modalities beyond just text, such as tables, figures, crystal structures, reaction
schemes, and spectra. This includes addressing the complexity of diverse modalities contained
within different data structures. A key frontier is tackling cross-document linking, where current
methods primarily focus on single documents. Future approaches, potentially using multiple
agents and RAG, will aim to handle complex relationships and information contained across
multiple documents and knowledge sources, understanding references and their context.
Developing multimodal LLMs that holistically integrate text, molecular graphs, spectra, and
experimental data is a critical avenue.

LLMs are currently seen as tools for expediting exploration. However, their role could evolve to
become sources of new insights and discoveries as they become more sophisticated and
versatile. The full potential of LLMs remains untapped. Future research aims to transition LLMs
from assistive tools to autonomous discovery engines capable of generating testable
hypotheses. These systems could bridge disciplinary silos and accelerate the translation of
knowledge into real-world innovations.

Ultimately, the hope is that the evolution of NLP and LLMs will not only streamline the materials
design process but also foster innovative breakthroughs to significantly reduce the time and
costs of materials discovery. The future lies in amplifying human ingenuity through
"linguistically intelligent systems that speak the language of molecules".

b. Future scientific work in the fields of chemistry with IE

The vast majority of materials knowledge is published as scientific literature in unstructured text
format. Information extraction is critical for converting this unstructured data into organized,
structured formats, such as databases, which are crucial for innovative and systematic materials
design.

This automated data construction is a necessity, addressing the severe limitation and time-
consuming nature of manual data collection from the overwhelming volume of literature.



Specifically, information extraction from text, including compounds, compositions, properties,
synthesis processes, parameters, and process routes, will enable:

e Materials Discovery and Design: Creating databases for data-driven materials design,
assisting in new materials discovery, identifying candidates, and enabling the generation of
new molecular structures and compounds.

e Property Prediction: Extracting data and encoding it (e.g., as word embeddings) can establish
relationships with properties and be used directly for predicting materials properties.

e Composition and Process Optimization: Extracting details on compositions and synthesis
routes enables efforts to identify optimal compositions and suggest processing conditions.

e Knowledge Synthesis and Question Answering: Extracting and processing information from
vast texts allows LLMs to answer precise questions about chemical concepts and summarize
extensive research reports.

Besides, by integrating extraction with search and machine learning agents, systems could
autonomously find data and train models to answer research queries. Ultimately, enhanced
information extraction is a key component in enabling LLMs to transition into autonomous
discovery engines capable of generating testable hypotheses. This promises to streamline the
materials design process, foster innovative breakthroughs, and significantly reduce the time and
costs of materials discovery.

In summary, information extraction is fundamental because it unlocks the knowledge hidden in
unstructured scientific literature. In the future, powered by sophisticated NLP and LLMs that can
handle diverse data types, contexts, and integrate with other tools, it will not just provide data
but directly contribute to discovery, prediction, design, optimization, and the eventual
realization of autonomous research workflows in chemistry and materials science.

M=
Table 2:0verview of some data sources relevant for structured data extraction from scientific

text, including published articles in open-access archives and data dumps

Table 3:

Method Model Normal Model Size Dataset Dataset Size Task
Form Name
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scientific
literature
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N/A

Corpus of
journal
articles,
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documents,
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6-tuple),
Interdepen
ency
resolution,
Table
parsing/
classificatic
n, Text
classificatic
n, Extractin
chemical
compositic
/properties

Converting
paragraph
to table,
Extracting
11 MOF
synthesis
parameters
Summarizi
g synthesis
conditions,
Determinin
quantities,
volumes



ChemNLP

Extracting
structured
data from
organic
synthesis
procedures

using a fine-

tuned large
language
model

ChemDataE
xtractor,
JARVIS-
Tools,
Named
entity
recognition
model,
BERT-
based,
SciBERT

Fine-tuned

LLM, Closed-

source
LLMs,

Transformer

-based
model
(Vaucher et
al.),
SynthReade
r(rule-
based)

Pre-
training,
Fine-tuning,
Use of
output
vector

embeddings

Fine-tuning,
In-prompt
data
schema,
Rule-based

BERT-
based,
SciBERT

N/A

arXiv:cond-
mat
dataset,
Massive
corpora
(unlabeled),
Specific
datasets

(fine-tuning)

Organic
synthesis
procedures,
ChEMU
evaluation
lab corpus

Massive
corpora,
arXiv:cond-

mat size N/A

Size N/A

Informatiol
extraction,
Text
classificatic
n, Entity
recognitior
(NER),
Question
answering,
Relation
extraction,
Recognizin
organic/
inorganic
entities,
Abstract
summariza
on (impliec

Extracting
structured
data,
Converting
procedures
to action
sequences,
Translating
to cDL, NEF
RE
(reaction/
workup
steps),
Extracting
parameters
objects



Fine-tuning
large
language
models for
chemical

MATERIOMI
NER

Large

Language

Models

(LLMs), Fine-tuning,

GPT-3.5- Prompt 7b, 13b

turbo, engineering, (Llama-2),

GPT-4.0, Sequence- GPT-3.5-

Llama2,T5 to- turbo,

(comparison sequence, GPT-4.0

), BART LoRA

(comparison

), BERT-like

models

Pre-trained

models (for

fine-tuning Fine-tunin

NER), BERT- 1 ken ° BERT-

based, e

Seq2seq classificatio based,
n (NER), BIO BART,

BART .

(REBEL), ta‘gglng,_ YOLOV5,

YOLOVS, DlrectFrlple TableModel
extraction

TableModel

Datasets for
5 chemical
text mining
tasks,
Paragraph2
MOFInfo
dataset, Re-
annotated
Paragraph2
MOFInfo,
USPTO
reaction
dataset

(mentioned)

MaterioMine

r dataset,
Literature
corpus
(materials
mechanics),
Materials
science
datasets

(comparison

). CoNLL

Dataset
details in
Table S1,
Paragraph2
MOFInfo:
329 train,
329 test
samples.
USPTO size
N/A.

4
publication
s,2191
entities,
12,155
tokens, 27%
annotated,
179 distinct
classes (FG-
NER).
Comparison
datasets: 45
pubs (288k
tokens, 2%
anno), 750
abstracts
(24k tokens.

Chemical
text mining
tasks,
Labeling
reaction
roles,
Extracting
MOF
synthesis
informatiol
(11
parameters
Paragraph:
MOFInfo),
Extracting
NMR data,
Converting
procedures
to action
sequences

NER (coars:
fine-
granular),
Token
classificatic
n, Relation
Extraction
(RE), Entity
linking (not
NEL), Fine-
tuning for
triple
extraction,
Causal
relationshi



Mining
experimenta
[ data from
Materials
Science
literature
with Large
Language
Models

(LSTM,
attention)

LLMs
(GPT-3.5-
Turbo,
GPT-4,
GPT-4-
Turbo),
BERT, Rule-
based
algorithm
(baseline),
Sentence
BERT

Zero-shot,
Few-shot,
Fine-tuning,
Strict
matching
(RE eval),
Formula
matching
(evaluation),
JSON
output
required

GPT-3.5-
Turbo,
GPT-4,
GPT-4-
Turbo,
BERT,
Sentence
BERT

2002 NER,
Webanno
TSV

SuperMat,
MeasEval,
grobid-
quantities
dataset

Corpus of

14% anno),
800
abstracts
(111k
tokens, 20%
anno), 305
pubs (66k
tokens, 22%
anno).

SuperMat
RE fine-
tuning:
344/148
(base/doc
order),
695/299
(augmented
). SuperMat
NER fine-
tuning:
1639/703.
grobid-
guantities
NER fine-
tuning:
485/208.
Evaluation
dataset size
N/A,
Support
counts
provided.

extraction

(conceptua
, PDF text/

image/tabl
extraction,
Classifying
PDF cells

Informatiol
extraction,
NER
(materials,
properties)
Relation
Extraction
(materials-
properties)
Evaluating
IE on
materials
entities,
Text
classificatic
n

Large-scale
IE



Named
Entity
Recognition
and
Normalizati
on Applied
to Large-
Scale
Information
Extraction
from the
Materials
Science
Literature

Named
entity
recognition
in chemical
patents
using

ensemble of

contextual
language
models

Neural
network
(NER),
Supervised
ML

(Normalizati

on), Linear
classifier
(Document
selection),
ChembDataE
xtractor

Contextualiz
ed language

models,
BERT-based

Supervised
ML, Trained
neural
network,
Rule-based
pre-
processing,
Tokenizatio
Normalizati
on (regex,
rules),
Binary
classificatio
n

Fine-tuned,

architecture, Token

bert-base/

classificatio

large-cased/ n

uncased,
ChemBERTa

-1 (ROBERTa)

N/A

BERT-base/
large,
ChemBERTa
-1

materials
science
articles
(abstracts),
Hand-
annotated
abstracts
(NER
training),
JSON files
(normalizati
on),
Extracted
entities,
Labeled
abstracts
(document
selection),
Dev/Test
sets (NER)

Corpus of
chemical
patents
(ChEMU
lab),

Examples of

ChEMU NER
task,
Corpus for
ChemBERTa
-1 pre-
training
(SMILES),
Corpus for
BERT pre-
training

Over 3.27
million
abstracts,
800 hand-
annotated
abstracts
(NER train),
1094
labeled
abstracts
(doc select),
Dev/Test
sets size N/

Corpus size
N/A,
Examples
size N/A.
ChemBERTa
-1 pre-
training:
100k
SMILES.
BERT pre-
training:
large
corpus.

(abstracts),
NER, Entity
normalizat
n,
Document
selection
(binary
classificatic
n),
Extracting
entity type:
(MAT, SPL,
DSC, PRO,
APL, SMT,
CMT),
Tokenizatic
n,
Normalizin
chemical
formulae

NER in
chemical
patents,
Classifying
tokens,
Extracting
informatiol
Entities:
example
label,
compound
types,
reaction
roles,
physical
parameters

Extracting
high-qualit
chemical
reaction



Suitability
of large
language
models for
extraction
of high-
quality
chemical
reaction
dataset
from patent
literature

LLMs,
GPT-3.5/4
(OpenAl),
GPT-4,
Open-
sourced
LLMs,
Llama-2,
GPT-3.5-
turbo

Neural

Prompt-

tuning,

Manual

inspection,

Fine-tuning, 7b,13b
Verification (Llama-2),
(fact- GPT-3.5/4/3.
based), 5-turbo/4.0
Prompt

engineering,

Agent-

based, LoRA

USPTO
database,
RXNFP
dataset,
Curated
dataset,
Test
samples

SOFC-Exp

USPTO
large,
RXNFP
classified
834 classes,
Sampled
834 points
for prompt-
tuning/
curation,
Curated
dataset 8:2

split (size N/

A), Test
samples
size N/A

dataset,
Extracting
reaction
informatiol
Structuring
text,
Generating
summaries
Compiling
info,
Converting
unstructure
dto
structured,
Extracting
chemical
formulas/
reactant
names,
Extracting
reaction
data
(JSON),
Verifying
extracted
info

IEin
materials
science,
Extracting
SOFC
experimen
info.



The SOFC-
Exp Corpus
and Neural
Approaches
to
Information
Extraction
in the
Materials
Science
Domain

networks,
BiLSTM,
BERT-
based,
SciBERT,
BERT-base,
CRF
(baseline),
BiLSTM with
attention,
Combinatio
ns of

embeddings

Neural
network
based,
Binary
sentence
classificatio
n, Retrieval,
Semantic-
role-
labeling
(Slot filling),
5-fold cross
validation

BERT-base,
SciBERT

Corpus,
Annotated
scholarly
articles,
Annotation
test set,

Developmen

t set,
Synthesis
Procedures
dataset

(comparison

)

45 open-
access
scientific
publication
s, Synthesis
Procedures:
230
annotated

procedures.

|dentifying
experimen
sentences
(detection)
|dentifying
materials/
values/
devices
(entity
mention
detection/
typing), Slc
filling
(experimer
slots), Entit
extraction
(Synthesis
Procedures
dataset)



